Skip to content
  • About
  • Contact
  • Contribute
  • Book
  • Careers
  • Podcast
  • Recommended
  • Speaking
  • All
  • Physician
  • Practice
  • Policy
  • Finance
  • Conditions
  • .edu
  • Patient
  • Meds
  • Tech
  • Social
  • Video
    • All
    • Physician
    • Practice
    • Policy
    • Finance
    • Conditions
    • .edu
    • Patient
    • Meds
    • Tech
    • Social
    • Video
    • About
    • Contact
    • Contribute
    • Book
    • Careers
    • Podcast
    • Recommended
    • Speaking

Knowing how artificial intelligence works empowers clinicians to be at the forefront of using it

Kathryn Peper, MD
Tech
March 22, 2019
Share
Tweet
Share

Physicians and other health care professionals are uniquely suited to understand artificial intelligence. They’ve studied or routinely use mathematics, data analysis, and algorithms. They comprehend pattern recognition, decision trees, rules-based systems, and statistics. These are the very components of AI.  Perhaps the only thing our premed and medical training didn’t teach us was how to code. But we understand how coding is done. Add to this our training in how the brain works, our insight into neurons and their networks, and our expertise in human cognition, and it becomes obvious our medical background jumpstarts a strong artificial intelligence understanding. We should not turn away from AI, but as a favorite quote from the Matrix urges: “Take the red pill.”

Artificial intelligence is defined as computers systems which act intelligently. The field of AI has six subsets:  reasoning, planning, perception, ability to move and manipulate objects, natural language processing and what has come to be the essential component of AI, machine learning.

Machine learning is AI’s leading edge. The term machine learning is ascribed to Arthur Samuel’s experiments at IBM in the late 1950s in which he used simple algorithms to teach machines to play checkers. Algorithms are programmed code which tell a computer precisely what steps to take to solve a problem or reach a goal. They are called inputs, while the results are called the outputs. We think computers are not intelligent because they aren’t able to do anything without us first programming or teaching them. However more recent machine learning involves the computer becoming more intelligent by teaching itself.

Through the use of programmed algorithms, computers analyze large amounts of data, then learn patterns that will help it make predictions about new data sets. The more data provided for the algorithm, the better the predictions, and the quality of the predictions improve with experience. In essence, the machine is being trained to teach itself to learn in a similar way to humans by interpreting data and using feedback to learn from successes and failures to make better decisions and predict outcomes (optimization).  When you layer these processes to optimize predictions based on the data received, you create something called neural networks.

Neural networks are based on the brain which works through connected networks of neurons. Computers can be programmed using algorithmic structures to simulate neuron function. In a neural network, there are three layers of neurons: the input layer where data enters, the hidden layer where information is processed, and the output layer where the system decides what to do based on the data. Multiple layers of neural networks can be assembled to form a deep neural network where the output of one neuron layer becomes the input for the next neuron layer. Many neural networks can be layered in a network so deep that new computational methods called GPUs and clusters of computer nodes are needed to build them. In these systems, the machine learns as it filters information through multiple neural network layers similar to the way the brain works. This is known as deep learning.

Deep learning uses algorithms in neural layers to create a neural network that can learn and make intelligent decisions on its own. The term was introduced by Rina Dechter in her work in cognitive systems in 1986.  Learning can be supervised (trained with labeled data), semi-supervised, or unsupervised (trained with little data). The “deep” in deep learning is the number of layers through which the data is transformed. As part of deep learning, recurrent neural networks are used in pattern recognition, and convolutional neural networks are used for image recognition. Deep learning is a sub-field of machine learning and leads to the most human-like artificial intelligence.

Artificial intelligence has many components which we as medical professionals can easily understand.  From machine learning algorithms leading to neural networks, to layered neural networks creating deep learning systems, we have expansive knowledge to comprehend how a computer becomes intelligent. Knowing how artificial intelligence works empowers us to be at the forefront of using it.

Kathryn Peper is an internal medicine physician.

Image credit: Shutterstock.com

Prev

These are the moments that define medical care

March 22, 2019 Kevin 0
…
Next

MKSAP: 49-year-old woman with worsening joint symptoms

March 23, 2019 Kevin 0
…

Tagged as: Health IT

Post navigation

< Previous Post
These are the moments that define medical care
Next Post >
MKSAP: 49-year-old woman with worsening joint symptoms

ADVERTISEMENT

ADVERTISEMENT

ADVERTISEMENT

More by Kathryn Peper, MD

  • AI in medicine: Separate hype from reality

    Kathryn Peper, MD
  • The truth about artificial intelligence in medicine

    Kathryn Peper, MD

Related Posts

  • A call to clinicians: Contrary to what you’ve been taught, use social media

    Joshua Mansour, MD
  • Why clinicians can’t keep ignoring care coordination

    Curtis Gattis
  • When Western medicine fails patients and clinicians

    Kimberly Rogers, MD
  • Clinicians shouldn’t be punished for taking care of needy populations

    Peter Ubel, MD
  • New Medicare documentation and payment changes starting next year that deliver relief for clinicians

    Seema Verma, MPH
  • As a patient, I never understood the heartbreakingly human toll our system takes on clinicians

    Christine Bechtel

More in Tech

  • How AI is revolutionizing health care through real-world data

    Sujay Jadhav, MBA
  • Ambient AI: When health monitoring leaves the screen behind

    Harvey Castro, MD, MBA
  • Closing the gap in respiratory care: How robotics can expand access in underserved communities

    Evgeny Ignatov, MD, RRT
  • Model context protocol: the standard that brings AI into clinical workflow

    Harvey Castro, MD, MBA
  • Addressing the physician shortage: How AI can help, not replace

    Amelia Mercado
  • The silent threat in health care layoffs

    Todd Thorsen, MBA
  • Most Popular

  • Past Week

    • The silent toll of ICE raids on U.S. patient care

      Carlin Lockwood | Policy
    • Addressing the physician shortage: How AI can help, not replace

      Amelia Mercado | Tech
    • Why medical students are trading empathy for publications

      Vijay Rajput, MD | Education
    • Why does rifaximin cost 95 percent more in the U.S. than in Asia?

      Jai Kumar, MD, Brian Nohomovich, DO, PhD and Leonid Shamban, DO | Meds
    • Why physicians deserve more than an oxygen mask

      Jessie Mahoney, MD | Physician
    • Avarie’s story: Confronting the deadly gaps in food allergy education and emergency response [PODCAST]

      The Podcast by KevinMD | Podcast
  • Past 6 Months

    • What’s driving medical students away from primary care?

      ​​Vineeth Amba, MPH, Archita Goyal, and Wayne Altman, MD | Education
    • How dismantling DEI endangers the future of medical care

      Shashank Madhu and Christian Tallo | Education
    • How scales of justice saved a doctor-patient relationship

      Neil Baum, MD | Physician
    • A faster path to becoming a doctor is possible—here’s how

      Ankit Jain | Education
    • Make cognitive testing as routine as a blood pressure check

      Joshua Baker and James Jackson, PsyD | Conditions
    • The broken health care system doesn’t have to break you

      Jessie Mahoney, MD | Physician
  • Recent Posts

    • Avarie’s story: Confronting the deadly gaps in food allergy education and emergency response [PODCAST]

      The Podcast by KevinMD | Podcast
    • Why the physician shortage may be our last line of defense

      Yuri Aronov, MD | Physician
    • 5 years later: Doctors reveal the untold truths of COVID-19

      Arthur Lazarus, MD, MBA | Physician
    • The hidden cost of health care: burnout, disillusionment, and systemic betrayal

      Nivedita U. Jerath, MD | Physician
    • What one diagnosis can change: the movement to make dining safer

      Lianne Mandelbaum, PT | Conditions
    • Why this doctor hid her story for a decade

      Diane W. Shannon, MD, MPH | Physician

Subscribe to KevinMD and never miss a story!

Get free updates delivered free to your inbox.


Find jobs at
Careers by KevinMD.com

Search thousands of physician, PA, NP, and CRNA jobs now.

Learn more

Leave a Comment

Founded in 2004 by Kevin Pho, MD, KevinMD.com is the web’s leading platform where physicians, advanced practitioners, nurses, medical students, and patients share their insight and tell their stories.

Social

  • Like on Facebook
  • Follow on Twitter
  • Connect on Linkedin
  • Subscribe on Youtube
  • Instagram

ADVERTISEMENT

ADVERTISEMENT

ADVERTISEMENT

ADVERTISEMENT

  • Most Popular

  • Past Week

    • The silent toll of ICE raids on U.S. patient care

      Carlin Lockwood | Policy
    • Addressing the physician shortage: How AI can help, not replace

      Amelia Mercado | Tech
    • Why medical students are trading empathy for publications

      Vijay Rajput, MD | Education
    • Why does rifaximin cost 95 percent more in the U.S. than in Asia?

      Jai Kumar, MD, Brian Nohomovich, DO, PhD and Leonid Shamban, DO | Meds
    • Why physicians deserve more than an oxygen mask

      Jessie Mahoney, MD | Physician
    • Avarie’s story: Confronting the deadly gaps in food allergy education and emergency response [PODCAST]

      The Podcast by KevinMD | Podcast
  • Past 6 Months

    • What’s driving medical students away from primary care?

      ​​Vineeth Amba, MPH, Archita Goyal, and Wayne Altman, MD | Education
    • How dismantling DEI endangers the future of medical care

      Shashank Madhu and Christian Tallo | Education
    • How scales of justice saved a doctor-patient relationship

      Neil Baum, MD | Physician
    • A faster path to becoming a doctor is possible—here’s how

      Ankit Jain | Education
    • Make cognitive testing as routine as a blood pressure check

      Joshua Baker and James Jackson, PsyD | Conditions
    • The broken health care system doesn’t have to break you

      Jessie Mahoney, MD | Physician
  • Recent Posts

    • Avarie’s story: Confronting the deadly gaps in food allergy education and emergency response [PODCAST]

      The Podcast by KevinMD | Podcast
    • Why the physician shortage may be our last line of defense

      Yuri Aronov, MD | Physician
    • 5 years later: Doctors reveal the untold truths of COVID-19

      Arthur Lazarus, MD, MBA | Physician
    • The hidden cost of health care: burnout, disillusionment, and systemic betrayal

      Nivedita U. Jerath, MD | Physician
    • What one diagnosis can change: the movement to make dining safer

      Lianne Mandelbaum, PT | Conditions
    • Why this doctor hid her story for a decade

      Diane W. Shannon, MD, MPH | Physician

MedPage Today Professional

An Everyday Health Property Medpage Today
  • Terms of Use | Disclaimer
  • Privacy Policy
  • DMCA Policy
All Content © KevinMD, LLC
Site by Outthink Group

Leave a Comment

Comments are moderated before they are published. Please read the comment policy.

Loading Comments...