Skip to content
  • About
  • Contact
  • Contribute
  • Book
  • Careers
  • Podcast
  • Recommended
  • Speaking
KevinMD
  • All
  • Physician
  • Practice
  • Policy
  • Finance
  • Conditions
  • .edu
  • Patient
  • Meds
  • Tech
  • Social
  • Video
  • All
  • Physician
  • Practice
  • Policy
  • Finance
  • Conditions
  • .edu
  • Patient
  • Meds
  • Tech
  • Social
  • Video
    • All
    • Physician
    • Practice
    • Policy
    • Finance
    • Conditions
    • .edu
    • Patient
    • Meds
    • Tech
    • Social
    • Video
    • About
    • Contact
    • Contribute
    • Book
    • Careers
    • Podcast
    • Recommended
    • Speaking
KevinMD
  • All
  • Physician
  • Practice
  • Policy
  • Finance
  • Conditions
  • .edu
  • Patient
  • Meds
  • Tech
  • Social
  • Video
    • All
    • Physician
    • Practice
    • Policy
    • Finance
    • Conditions
    • .edu
    • Patient
    • Meds
    • Tech
    • Social
    • Video
    • About
    • Contact
    • Contribute
    • Book
    • Careers
    • Podcast
    • Recommended
    • Speaking
  • About KevinMD | Kevin Pho, MD
  • Be heard on social media’s leading physician voice
  • Contact Kevin
  • Discounted enhanced author page
  • DMCA Policy
  • Establishing, Managing, and Protecting Your Online Reputation: A Social Media Guide for Physicians and Medical Practices
  • Group vs. individual disability insurance for doctors: pros and cons
  • KevinMD influencer opportunities
  • Opinion and commentary by KevinMD
  • Physician burnout speakers to keynote your conference
  • Physician Coaching by KevinMD
  • Physician keynote speaker: Kevin Pho, MD
  • Physician Speaking by KevinMD: a boutique speakers bureau
  • Primary care physician in Nashua, NH | Doctor accepting new patients
  • Privacy Policy
  • Recommended services by KevinMD
  • Terms of Use Agreement
  • Thank you for subscribing to KevinMD
  • Thank you for upgrading to the KevinMD enhanced author page
  • The biggest mistake doctors make when purchasing disability insurance
  • The doctor’s guide to disability insurance: short-term vs. long-term
  • The KevinMD ToolKit
  • Upgrade to the KevinMD enhanced author page
  • Why own-occupation disability insurance is a must for doctors

Validating AI in health care: the role of real-world evidence

Jeanna Blitz, MD
Tech
February 11, 2026
Share
Tweet
Share

Before complex medical interventions ever reach patients, their effectiveness must be scientifically proven through rigorous testing in controlled settings such as laboratories and research facilities. But ensuring effectiveness doesn’t stop there. The process of assessing a medical treatment’s usefulness is multilayered and requires investigation that goes well beyond the laboratory. It must also assess how the treatment fares in day-to-day clinical practice for a wide variety of patients. Now, as AI takes on a larger role in care delivery, the same need exists. AI’s performance must be evaluated in real-world clinical practice, not just via controlled datasets or solitary training environments.

Fortunately, although AI is a new addition to the health care toolkit, a roadmap for assessing AI’s effectiveness already exists in methodologies for evaluating real-world data (RWD) and real-world evidence (RWE). Long used in post-market surveillance and regulatory decision-making for health care interventions, RWE studies are an established practice for the continuous, outcomes-driven assessment that ensures a treatment’s safety, effectiveness, generalizability, and equity. But applying this practice to assess AI-supported treatments requires data discipline and routine updates. AI has the potential to revolutionize the way we address serious health concerns. However, to use the technology safely, it must be held to the same level of ongoing scrutiny and real-world discipline as any other treatment intervention used in real-life clinical practice.

Adaptive tools need adaptive oversight and validation

Many AI models aren’t static. Their behavior evolves based on shifting data and new information. They change when retrained or updated and learn new patterns through a series of complex and layered steps. The performance of any AI, including those used in health care, can also decay (i.e., experience “model drift”) as populations, diagnosis coding, or practice patterns shift. Feedback loops can amplify errors and subgroup gaps may widen quietly over time. Version updates and data pipeline tweaks can also alter behavior without obvious signals. With critical elements of our health care system at stake, detecting these kinds of subtle but impactful shifts with real-world validation is essential. Not only can this kind of validation help prove an algorithm works at launch, but it can also keep it safe, effective, and equitable as the model evolves and the care environment changes. Getting this validation right is where RWE studies come in.

RWE’s unique potential in a world of AI-supported health care

Real-world evidence (RWE) is the rigorous analysis of real-world data (RWD), data that can be aggregated from electronic health records (EHRs), claims, registries, medical devices, and patient-reported information, to evaluate the safety and effectiveness of care in everyday practice. Rooted in pharmacoepidemiology and post-market surveillance, RWE leverages the observational data from the day-to-day provision of health care to uncover benefits and risks that tightly controlled clinical trials may not capture.

As EHR adoption, common data standards, data linkages across systems, and modern causal methods have matured, regulators have also begun formally using RWE alongside trials, first for safety and labeling, then for coverage, quality, and comparative effectiveness. When combined with clinical trials, RWE adds value by demonstrating how interventions perform across diverse patient populations and settings, at scale and over time.

This approach is a natural fit for health care AI. RWE can test algorithms across populations, workflows, and datasets. Done well, it can show how technical metrics like discrimination, calibration, or drift are linked to clinical and quality outcomes such as utilization and error rates, tracking performance over time, and logging meaningful changes. RWE studies work best when they follow a pre-specified analysis plan, offering a transparent and practical way to show when an AI tool is safe, effective, and equitable in real-world care, and to reveal where it isn’t.

Getting RWE studies right, and why it matters

RWE helps answer lingering questions about a health care intervention’s effectiveness outside of controlled trials and ensures its ongoing effectiveness over time. But any RWE study is only as strong as its foundations. Fit-for-purpose data, a clear question, and transparent methods are required for strong and reliable RWE studies. If the study data are incomplete, inconsistently coded, or poorly linked, results can mislead or amplify risks like residual confounding, selection bias, and misclassification. Credible RWE demonstrates its work by documenting data provenance, employing rigorous design and causal methods, conducting sensitivity analyses, and selecting outcomes that matter clinically.

To effectively use RWE to evaluate AI, the study must be performed in settings where AI models are typically used, on patients and workflows they impact, with outcomes that matter. The result ensures that the AI model’s output remains safe, effective, and fair as data, practice, and the models themselves evolve. It is an investment in quality that developers of AI tools must make, and users must demand of the products they introduce into their practices.

Applying RWE across the AI product lifecycle

The U.S. Food and Drug Administration (FDA) recognizes this need and has incorporated RWE into its total product life cycle (TPLC) framework for medical devices, including those that are AI-enabled. This framework guides medical device manufacturers and regulators through the design, validation, and post-market monitoring of medical technologies and can serve as a guidepost for future development of other forms of health care AI.

ADVERTISEMENT

Integrating RWE throughout this lifecycle enables continuous oversight at each stage.

  • During design and development, RWE helps product developers understand user needs, patient diversity, and real-world contexts.
  • In testing and validation, RWE can confirm that an AI model performs consistently across different populations and care settings through external validation, subgroup analyses, and workflow assessments.
  • After market release, RWE supports post-market surveillance, detecting issues such as data drift, bias, or performance degradation over time.

RWE serves as both a quality assurance tool and a feedback mechanism, ensuring that AI systems evolve responsibly and are informed by real-world healthcare scenarios.

A final word: Building trust in AI through evidence

The future of AI in health care depends on a thoughtful balance of innovation with diligent accountability and evidence. RWE study frameworks offer a proven, pragmatic pathway to assess whether AI truly benefits patients in the settings where care happens every day. But RWE studies themselves must be applied carefully and consistently to provide the most benefit.

Applying established RWE principles to the validation of AI-enabled medical treatments is essential for health care organizations, regulators, and developers to align around a shared goal: ensuring that AI improves health outcomes for all. AI’s potential is extraordinary. Realizing that potential requires the same discipline, transparency, and continuous learning that define the best of medicine itself.

Jeanna Blitz is a physician executive.

Prev

Why Medicare must cover atrial fibrillation screening to prevent strokes

February 11, 2026 Kevin 1
…
Next

Employer-sponsored DPC: Why private equity is winning the infrastructure race

February 11, 2026 Kevin 0
…

Tagged as: Health IT

< Previous Post
Why Medicare must cover atrial fibrillation screening to prevent strokes
Next Post >
Employer-sponsored DPC: Why private equity is winning the infrastructure race

ADVERTISEMENT

Related Posts

  • What happened to real care in health care?

    Christopher H. Foster, PhD, MPA
  • Why the health care industry must prioritize health equity

    George T. Mathew, MD, MBA
  • Bridging the rural surgical care gap with rotating health care teams

    Ankit Jain
  • To “fix” health care delivery, turn to a value-based health care system

    David Bernstein, MD, MBA
  • Health care’s hidden problem: hospital primary care losses

    Christopher Habig, MBA
  • Melting the iron triangle: Prioritizing health equity in dynamic, innovative health care landscapes

    Nina Cloven, MHA

More in Tech

  • Iterative mindset versus AI and GLP-1s: Why shortcuts weaken the brain

    Martha Rosenberg
  • Why voicemail in outpatient care is failing patients and staff

    Dan Ouellet
  • Building a clinical simulation app without an MD: a developer’s guide

    Helena Kaso, MPA
  • AI-enabled clinical data abstraction: a nurse’s perspective

    Pamela Ashenfelter, RN
  • Agentic AI in medicine: the danger of automating the doctor

    Shiv K. Goel, MD
  • Will AI replace primary care physicians?

    P. Dileep Kumar, MD, MBA
  • Most Popular

  • Past Week

    • Why Medicare must cover atrial fibrillation screening to prevent strokes

      Radhesh K. Gupta | Conditions
    • My wife’s story: How DEA and CDC guidelines destroyed our golden years

      Monty Goddard & Richard A. Lawhern, PhD | Conditions
    • Why medical school DEI mission statements matter for future physicians

      Aditi Mahajan, MEd, Laura Malmut, MD, MEd, Jared Stowers, MD, and Khaleel Atkinson | Education
    • The American Board of Internal Medicine maintenance of certification lawsuit: What physicians need to know

      Brian Hudes, MD | Physician
    • Teaching joy transforms the future of medical practice [PODCAST]

      The Podcast by KevinMD | Podcast
    • High-protein diet risks: Why more isn’t always better

      Farid Sabet-Sharghi, MD | Conditions
  • Past 6 Months

    • Will AI replace primary care physicians?

      P. Dileep Kumar, MD, MBA | Tech
    • A physician father on the Dobbs decision and reproductive rights

      Travis Walker, MD, MPH | Physician
    • What is the minority tax in medicine?

      Tharini Nagarkar and Maranda C. Ward, EdD, MPH | Education
    • Why the U.S. health care system is failing patients and physicians

      John C. Hagan III, MD | Policy
    • Alex Pretti: a physician’s open letter defending his legacy

      Mousson Berrouet, DO | Physician
    • Why voicemail in outpatient care is failing patients and staff

      Dan Ouellet | Tech
  • Recent Posts

    • Employer-sponsored DPC: Why private equity is winning the infrastructure race

      Dana Y. Lujan, MBA | Policy
    • Validating AI in health care: the role of real-world evidence

      Jeanna Blitz, MD | Tech
    • Why Medicare must cover atrial fibrillation screening to prevent strokes

      Radhesh K. Gupta | Conditions
    • Teaching joy transforms the future of medical practice [PODCAST]

      The Podcast by KevinMD | Podcast
    • Why Filipino nurses faced higher COVID-19 mortality rates

      Joaquim Diego Santos | Policy
    • Frailty and functional decline: Why diagnosis is not enough

      Gerald Kuo | Conditions

Subscribe to KevinMD and never miss a story!

Get free updates delivered free to your inbox.


Find jobs at
Careers by KevinMD.com

Search thousands of physician, PA, NP, and CRNA jobs now.

Learn more

Leave a Comment

Founded in 2004 by Kevin Pho, MD, KevinMD.com is the web’s leading platform where physicians, advanced practitioners, nurses, medical students, and patients share their insight and tell their stories.

Social

  • Like on Facebook
  • Follow on Twitter
  • Connect on Linkedin
  • Subscribe on Youtube
  • Instagram

ADVERTISEMENT

ADVERTISEMENT

  • Most Popular

  • Past Week

    • Why Medicare must cover atrial fibrillation screening to prevent strokes

      Radhesh K. Gupta | Conditions
    • My wife’s story: How DEA and CDC guidelines destroyed our golden years

      Monty Goddard & Richard A. Lawhern, PhD | Conditions
    • Why medical school DEI mission statements matter for future physicians

      Aditi Mahajan, MEd, Laura Malmut, MD, MEd, Jared Stowers, MD, and Khaleel Atkinson | Education
    • The American Board of Internal Medicine maintenance of certification lawsuit: What physicians need to know

      Brian Hudes, MD | Physician
    • Teaching joy transforms the future of medical practice [PODCAST]

      The Podcast by KevinMD | Podcast
    • High-protein diet risks: Why more isn’t always better

      Farid Sabet-Sharghi, MD | Conditions
  • Past 6 Months

    • Will AI replace primary care physicians?

      P. Dileep Kumar, MD, MBA | Tech
    • A physician father on the Dobbs decision and reproductive rights

      Travis Walker, MD, MPH | Physician
    • What is the minority tax in medicine?

      Tharini Nagarkar and Maranda C. Ward, EdD, MPH | Education
    • Why the U.S. health care system is failing patients and physicians

      John C. Hagan III, MD | Policy
    • Alex Pretti: a physician’s open letter defending his legacy

      Mousson Berrouet, DO | Physician
    • Why voicemail in outpatient care is failing patients and staff

      Dan Ouellet | Tech
  • Recent Posts

    • Employer-sponsored DPC: Why private equity is winning the infrastructure race

      Dana Y. Lujan, MBA | Policy
    • Validating AI in health care: the role of real-world evidence

      Jeanna Blitz, MD | Tech
    • Why Medicare must cover atrial fibrillation screening to prevent strokes

      Radhesh K. Gupta | Conditions
    • Teaching joy transforms the future of medical practice [PODCAST]

      The Podcast by KevinMD | Podcast
    • Why Filipino nurses faced higher COVID-19 mortality rates

      Joaquim Diego Santos | Policy
    • Frailty and functional decline: Why diagnosis is not enough

      Gerald Kuo | Conditions

MedPage Today Professional

An Everyday Health Property Medpage Today

Copyright © 2026 KevinMD.com | Powered by Astra WordPress Theme

  • Terms of Use | Disclaimer
  • Privacy Policy
  • DMCA Policy
All Content © KevinMD, LLC
Site by Outthink Group

Leave a Comment

Comments are moderated before they are published. Please read the comment policy.

Loading Comments...